Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.028
Filtrar
1.
Front Immunol ; 15: 1320094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576611

RESUMO

Background: Myelin oligodendrocyte glycoprotein antibody (MOG) immunoglobulin G (IgG)-associated disease (MOGAD) has clinical and pathophysiological features that are similar to but distinct from those of aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (AQP4-NMOSD). MOG-IgG and AQP4-IgG, mostly of the IgG1 subtype, can both activate the complement system. Therefore, we investigated whether the levels of serum complement components, regulators, and activation products differ between MOGAD and AQP4-NMOSD, and if complement analytes can be utilized to differentiate between these diseases. Methods: The sera of patients with MOGAD (from during an attack and remission; N=19 and N=9, respectively) and AQP4-NMOSD (N=35 and N=17), and healthy controls (N=38) were analyzed for C1q-binding circulating immune complex (CIC-C1q), C1 inhibitor (C1-INH), factor H (FH), C3, iC3b, and soluble terminal complement complex (sC5b-9). Results: In attack samples, the levels of C1-INH, FH, and iC3b were higher in the MOGAD group than in the NMOSD group (all, p<0.001), while the level of sC5b-9 was increased only in the NMOSD group. In MOGAD, there were no differences in the concentrations of complement analytes based on disease status. However, within AQP4-NMOSD, remission samples indicated a higher C1-INH level than attack samples (p=0.003). Notably, AQP4-NMOSD patients on medications during attack showed lower levels of iC3b (p<0.001) and higher levels of C3 (p=0.008), C1-INH (p=0.004), and sC5b-9 (p<0.001) compared to those not on medication. Among patients not on medication at the time of attack sampling, serum MOG-IgG cell-based assay (CBA) score had a positive correlation with iC3b and C1-INH levels (rho=0.764 and p=0.010, and rho=0.629 and p=0.049, respectively), and AQP4-IgG CBA score had a positive correlation with C1-INH level (rho=0.836, p=0.003). Conclusions: This study indicates a higher prominence of complement pathway activation and subsequent C3 degradation in MOGAD compared to AQP4-NMOSD. On the other hand, the production of terminal complement complexes (TCC) was found to be more substantial in AQP4-NMOSD than in MOGAD. These findings suggest a strong regulation of the complement system, implying its potential involvement in the pathogenesis of MOGAD through mechanisms that extend beyond TCC formation.


Assuntos
Neuromielite Óptica , Humanos , Aquaporina 4 , Complemento C1q , Complemento C3b , Proteínas do Sistema Complemento , Imunoglobulina G , Glicoproteína Mielina-Oligodendrócito
2.
Acta Neuropathol ; 147(1): 76, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658413

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies. To address these knowledge gaps, we conducted a comprehensive 'stage-dependent' investigation of immune cell elements in situ in human NMOSD lesions, based on neuropathological techniques for autopsied/biopsied CNS materials. The present study provided three major findings. First, activated or netting neutrophils and melanoma cell adhesion molecule-positive (MCAM+) helper T (TH) 17/cytotoxic T (TC) 17 cells are prominent, and the numbers of these correlate with the size of NMOSD lesions in the initial or early-active stages. Second, forkhead box P3-positive (FOXP3+) regulatory T (Treg) cells are recruited to NMOSD lesions during the initial, early-active or late-active stages, suggesting rapid suppression of proinflammatory autoimmune events in the active stages of NMOSD. Third, compartmentalized resident memory immune cells, including CD103+ tissue-resident memory T (TRM) cells with long-lasting inflammatory potential, are detected under "standby" conditions in all stages. Furthermore, CD103+ TRM cells express high levels of granzyme B/perforin-1 in the initial or early-active stages of NMOSD in situ. We infer that stage-dependent compartmentalized immune traits orchestrate the pathology of anti-AQP4 antibody-guided NMOSD in situ. Our work further suggests that targeting activated/netting neutrophils, MCAM+ TH17/TC17 cells, and CD103+ TRM cells, as well as promoting the expansion of FOXP3+ Treg cells, may be effective in treating and preventing relapses of NMOSD.


Assuntos
Aquaporina 4 , Autoanticorpos , Neuromielite Óptica , Neutrófilos , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Aquaporina 4/imunologia , Humanos , Neutrófilos/imunologia , Neutrófilos/patologia , Feminino , Autoanticorpos/imunologia , Masculino , Pessoa de Meia-Idade , Memória Imunológica , Adulto , Idoso , Células Th17/imunologia , Células Th17/patologia
3.
Fluids Barriers CNS ; 21(1): 28, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532513

RESUMO

Waste from the brain has been shown to be cleared via the perivascular spaces through the so-called glymphatic system. According to this model the cerebrospinal fluid (CSF) enters the brain in perivascular spaces of arteries, crosses the astrocyte endfoot layer, flows through the parenchyma collecting waste that is subsequently drained along veins. Glymphatic clearance is dependent on astrocytic aquaporin-4 (AQP4) water channels that are highly enriched in the endfeet. Even though the polarized expression of AQP4 in endfeet is thought to be of crucial importance for glymphatic CSF influx, its role in extracellular solute clearance has only been evaluated using non-quantitative fluorescence measurements. Here we have quantitatively evaluated clearance of intrastriatally infused small and large radioactively labeled solutes in mice lacking AQP4 (Aqp4-/-) or lacking the endfoot pool of AQP4 (Snta1-/-). We confirm that Aqp4-/- mice show reduced clearance of both small and large extracellular solutes. Moreover, we find that the Snta1-/- mice have reduced clearance only for the 500 kDa [3H]dextran, but not 0.18 kDa [3H]mannitol suggesting that polarization of AQP4 to the endfeet is primarily important for clearance of large, but not small molecules. Lastly, we observed that clearance of 500 kDa [3H]dextran increased with age in adult mice. Based on our quantitative measurements, we confirm that presence of AQP4 is important for clearance of extracellular solutes, while the perivascular AQP4 localization seems to have a greater impact on clearance of large versus small molecules.


MAIN POINTS: Solute clearance is reduced in mice lacking AQP4 Polarization of AQP4 to the endfeet may have a greater impact on clearance of large versus small molecules Clearance of large but not small solutes is correlated with age within adult age.


Assuntos
Dextranos , Sistema Glinfático , Animais , Camundongos , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Dextranos/metabolismo , Sistema Glinfático/metabolismo
4.
Clin Neurol Neurosurg ; 239: 108212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460428

RESUMO

OBJECTIVE: A plethora of monoclonals have ushered up for NMOSD treatment. However, their limited availability and cost concerns poses a challenge for usage in developing nations. We compared relapse rates and disabilities among aquaporin-4 positive(AQP4+ve) patients on conventional immunosuppressants and rituximab in a tertiary referral center in southern India. METHODS: This was a chart review of AQP4+ve patients registered under national demyelination registry maintained at institute. AQP4+ve patients were included if they were on azathioprine, MMF, methotrexate for six months; cyclophosphamide for three months and rituximab for one month. RESULTS: 207 records were screened, 154 fulfilled inclusion criteria. Drugs used were azathioprine (70), MMF (34) and rituximab (33). All three drugs were non-inferior to each other in terms of ARR reduction. Median EDSS at last follow-up was significantly lower for azathioprine(2;IQR:0-5) and rituximab(2;IQR:0.5-5) than MMF(3.5;IQR:2-5.6), however azathioprine was associated with highest switch rate(34.3%) and was the only drug which required change because of intolerance. Failure rate was least for rituximab(27.3%).Patients on azathioprine and MMF required higher mean duration of concurrent steroids(7.8±7.7 and 4.56±2.17 months respectively) when compared to rituximab(2.77±1.38) and had more relapses due to steroid withdrawal. CONCLUSION: Initial treatment with azathioprine, MMF and rituximab is comparable in terms of ARR reduction. Findings suggest that choice may be guided by adverse event profile of drug, rather than efficacy per se. Concurrent treatment duration with steroids should also guide clinical decision. Switch to second immunomodulation in event of initial failure adds to efficacy benefit, irrespective of the drug chosen.


Assuntos
Azatioprina , Neuromielite Óptica , Humanos , Azatioprina/uso terapêutico , Rituximab/uso terapêutico , Países em Desenvolvimento , Neuromielite Óptica/tratamento farmacológico , Imunossupressores/uso terapêutico , Aquaporina 4 , Esteroides/uso terapêutico , Estudos Retrospectivos , Recidiva
5.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542152

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is a rare, disabling inflammatory disease of the central nervous system (CNS). Aquaporin-4 (AQP4)-specific T cells play a key role in the pathogenesis of NMOSD. In addition to immune factors, T cells recognizing the AQP4 epitope showed cross-reactivity with homologous peptide sequences in C. perfringens proteins, suggesting that the gut microbiota plays an integral role in the pathogenicity of NMOSD. In this review, we summarize research on the involvement of the gut microbiota in the pathophysiology of NMOSD and its possible pathogenic mechanisms. Among them, Clostridium perfringens and Streptococcus have been confirmed to play a role by multiple studies. Based on this evidence, metabolites produced by gut microbes, such as short-chain fatty acids (SCFAs), tryptophan (Trp), and bile acid (BA) metabolites, have also been found to affect immune cell metabolism. Therefore, the role of the gut microbiota in the pathophysiology of NMOSD is very important. Alterations in the composition of the gut microbiota can lead to pathological changes and alter the formation of microbiota-derived components and metabolites. It can serve as a biomarker for disease onset and progression and as a potential disease-modifying therapy.


Assuntos
Microbioma Gastrointestinal , Neuromielite Óptica , Humanos , Aquaporina 4 , Linfócitos T , Sistema Nervoso Central , Autoanticorpos
6.
Magn Reson Imaging Clin N Am ; 32(2): 233-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555139

RESUMO

For over two centuries, clinicians have been aware of various conditions affecting white matter which had come to be grouped under the umbrella term multiple sclerosis. Within the last 20 years, specific scientific advances have occurred leading to more accurate diagnosis and differentiation of several of these conditions including, neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody disease. This new understanding has been coupled with advances in disease-modifying therapies which must be accurately applied for maximum safety and efficacy.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico por imagem , Glicoproteína Mielina-Oligodendrócito/metabolismo , Aquaporina 4 , Imageamento por Ressonância Magnética/métodos , Autoanticorpos
7.
Biochemistry ; 63(7): 855-864, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498694

RESUMO

AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Proteínas de Repetição de Anquirina Projetadas , Aquaporina 4/genética , Epitopos , Imunoglobulina G
8.
Physiol Behav ; 278: 114521, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492911

RESUMO

Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis. In present study, we examined the effect of different doses (10, 50, 100 µM and 5 mM) of AQP4 inhibitor, 2-nicotinamide-1, 3, 4-thiadiazole (TGN-020), during kindling acquisition, on seizure parameters and seizure-induced cognitive impairments. Animals were kindled by injection of pentylenetetrazole (PTZ: 37.5 mg/kg, i.p.). TGN-020 was administered into the right lateral cerebral ventricle 30 min before PTZ every alternate day. Seizure parameters were assessed 20 min after PTZ administration. One day following the last PTZ injection, memory performance was investigated using spontaneous alternation in Y-maze and novel object recognition (NOR) tests. The inhibition of AQP4 during the kindling process significantly decreased the maximal seizure stage and seizure duration (two-way ANOVA, P = 0.0001) and increased the latency of seizure onset and the number of PTZ injections required to induce different seizure stages (one-way ANOVA, P = 0.0001). Compared to kindled rats, the results of the NOR tests showed that AQP4 inhibition during PTZ-kindling prevented recognition memory impairment. Based on these results, AQP4 could be involved in seizure development and seizure-induced cognitive impairment. More investigation is required to fully understand the complex interactions between seizure activity, water homeostasis, and cognitive dysfunction, which may help identify potential therapeutic targets for these conditions.


Assuntos
Aquaporina 4 , Disfunção Cognitiva , Excitação Neurológica , Niacinamida , Tiadiazóis , Animais , Ratos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/complicações , Convulsões/tratamento farmacológico , Tiadiazóis/administração & dosagem , Água/efeitos adversos , Aquaporina 4/antagonistas & inibidores
9.
Neuropharmacology ; 250: 109907, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492884

RESUMO

The glymphatic system plays a crucial role in maintaining optimal central nervous system (CNS) function by facilitating the removal of metabolic wastes. Aquaporin-4 (AQP4) protein, predominantly located on astrocyte end-feet, is a key pathway for metabolic waste excretion. ß-Dystroglycan (ß-DG) can anchor AQP4 protein to the end-feet membrane of astrocytes and can be cleaved by matrix metalloproteinase (MMP)-9 protein. Studies have demonstrated that hyperglycemia upregulates MMP-9 expression in the nervous system, leading to neuropathic pain. Ginkgolide B (GB) exerts an inhibitory effect on the MMP-9 protein. In this study, we investigated whether inhibition of MMP-9-mediated ß-DG cleavage by GB is involved in the regulation of AQP4 polarity within the glymphatic system in painful diabetic neuropathy (PDN) and exerts neuroprotective effects. The PDN model was established by injecting streptozotocin (STZ). Functional changes in the glymphatic system were observed using magnetic resonance imaging (MRI). The paw withdrawal threshold (PWT) was measured to assess mechanical allodynia. The protein expressions of MMP-9, ß-DG, and AQP4 were detected by Western blotting and immunofluorescence. Our findings revealed significant decreases in the efficiency of contrast agent clearance within the spinal glymphatic system of the rats, accompanied by decreased PWT, increased MMP-9 protein expression, decreased ß-DG protein expression, and loss of AQP4 polarity. Notably, GB treatment demonstrated the capacity to ameliorate spinal cord glymphatic function by modulating AQP4 polarity through MMP-9 inhibition, offering a promising therapeutic avenue for PDN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Ginkgolídeos , Sistema Glinfático , Lactonas , Ratos , Animais , Sistema Glinfático/metabolismo , Metaloproteinase 9 da Matriz , Neuroproteção , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Medula Espinal/metabolismo , Aquaporina 4/metabolismo
10.
Int Ophthalmol ; 44(1): 138, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488890

RESUMO

PURPOSE: Optic neuritis (ON) is a relatively common ophthalmic disease that has recently received renewed attention owing to immunological breakthroughs. We studied the profile of patients with ON with special reference to antibody-mediated ON and the challenges faced in its management. METHODS: Case records of patients with ON presenting to a tertiary eye-care center in South India were analyzed. Data on demographics, presenting visual acuity (VA), clinical features, seropositivity for aquaporin-4 immunoglobulin G (AQP4-IgG) and myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG), details of magnetic resonance imaging (MRI) of orbits and brain, and treatment were collected. RESULTS: Among 138 cases with acute ON, male: female ratio was 1:2. Isolated ON was present in 41.3% of cases. Antibody testing of sera was performed in 68 patients only due to financial limitations. Among these, 48.5% were MOG-IgG-seropositive, 11.76% were AQP4-IgG-seropositive, and 30.88% samples were double seronegative. Other causes included multiple sclerosis (n = 4), lactational ON (n = 4), tuberculosis (n = 2), invasive perineuritis (n = 2), COVID-19 vaccination (n = 2), and COVID-19 (n = 1). The mean presenting best corrected visual acuity (BCVA) was 1.31 ± 1.16 logMAR (logarithm of the minimum angle of resolution). The mean BCVA at 3 months was 0.167 ± 0.46 logMAR. Only initial VA ≤ 'Counting fingers' (CF) had a significant association with the visual outcome for final VA worse than CF. The steep cost of investigations and treatment posed challenges for many patients in the management of ON. CONCLUSION: MOG-IgG-associated ON is common in India. Unfortunately, financial constraints delay the diagnosis and timely management of ON, adversely affecting the outcome.


Assuntos
COVID-19 , Neuromielite Óptica , Neurite Óptica , Humanos , Masculino , Feminino , Vacinas contra COVID-19/uso terapêutico , Autoanticorpos/uso terapêutico , Neurite Óptica/terapia , Neurite Óptica/tratamento farmacológico , Aquaporina 4/uso terapêutico , Imunoglobulina G/uso terapêutico
11.
Methods Mol Biol ; 2754: 351-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512676

RESUMO

Glymphatic system denotes a brain-wide pathway that eliminates extracellular solutes from brain. It is driven by the flow of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF) via perivascular spaces. Glymphatic convective flow is driven by cerebral arterial pulsation, which is facilitated by a water channel, aquaporin-4 (AQP4) expressed in astrocytic end-foot processes. Since its discovery, the glymphatic system receives a considerable scientific attention due to its pivotal role in clearing metabolic waste as well as neurotoxic substances such as amyloid b peptide. Tau is a microtubule binding protein, however it is also physiologically released into extracellular fluids. The presence of tau in the blood stream indicates that it is eventually cleared from the brain to the periphery, however, the detailed mechanisms that eliminate extracellular tau from the central nervous system remained to be elucidated. Recently, we and others have reported that extracellular tau is eliminated from the brain to CSF by an AQP4 dependent mechanism, suggesting the involvement of the glymphatic system. In this chapter, we describe the detailed protocol of how we can assess glymphatic outflow of tau protein from brain to CSF in mice.


Assuntos
Sistema Glinfático , Proteínas tau , Camundongos , Animais , Proteínas tau/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Aquaporina 4/metabolismo , Líquido Cefalorraquidiano/metabolismo
12.
Front Immunol ; 15: 1351782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426084

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is a rare demyelinating disease of the central nervous system primarily affecting the optic nerves, spinal cord, and brainstem. Viral infection may trigger NMOSD. Here, we report the case of a 34-year-old female presenting with a range of symptoms including nausea, vomiting, dysphagia, choking, and fatigue with unsteady gait, diplopia, hearing loss, left-sided facial paralysis, breathing difficulties, and hoarseness of voice. Her HBV DNA concentration, as determined by quantitative PCR analysis, exceeded 5×107 IU/ml in serum and 4.48×102 IU/ml in CSF. Next-generation sequencing of CSF revealed 1,528 HBV sequences in DNA analysis and 6 sequences in RNA analysis. Serum aquaporin-4 antibody (AQP4-Ab) titer was 1:10, and the CSF titer was 1:3.2. Brain magnetic resonance imaging showed high signal intensities in the brain stem, medulla oblongata, and left middle cerebellar peduncle with mild restricted-diffusion. The patient received antiviral and hepatoprotective medications before the high-dose methylprednisolone pulse therapy. However, the patient did not respond well to the first-line treatment. Subsequently, the patient received ofatumumab and inebilizumab. Throughout the follow-up period, there was a gradual improvement in her neurological symptoms, with no reactivation of hepatitis B or deterioration of liver function observed. Thereby, to the best of our knowledge, we report the first case of successful treatment with ofatumumab and inebilizumab in a patient with NMOSD concurrent with HBV infection.


Assuntos
Anticorpos Monoclonais Humanizados , Neuromielite Óptica , Humanos , Feminino , Adulto , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/tratamento farmacológico , Vírus da Hepatite B/genética , Aquaporina 4
14.
Neurology ; 102(5): e209147, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38546185

RESUMO

BACKGROUND AND OBJECTIVES: We aimed to evaluate the mortality of patients with AQP4 antibody-seropositive (AQP4-Ab+) neuromyelitis optica spectrum disorder (NMOSD) in Denmark compared with that in the general population. METHODS: We identified patients with AQP4-Ab+ NMOSD fulfilling the 2015 International Panel for Neuromyelitis Optica Diagnosis (IPND) criteria from multiple sources (laboratories and the Danish Multiple Sclerosis Registry). We obtained detailed information about patients from hospital records and about the general population matched on age, sex, and calendar year from Statistics Denmark. We calculated standardized mortality ratio (SMR), excess number of deaths per 1,000 person-years (EDR), and life expectancies compared with those of the matched general population. We examined predictive factors of mortality and the cause of death. RESULTS: Of 66 patients with AQP4-Ab+ NMOSD between 2008 and 2020, 15 died. Overall, the SMR was 2.54 (95% CI 1.47-4.09), and the EDR was 16.8 (95% CI 4.6-34.3). The median life expectancy for patients with AQP4-Ab+ NMOSD was 64.08 years (95% CI 53.02-83.9), compared with 83.07 years for the general population. Risk of death over time was increased in the patient population with a hazard ratio (HR) of 2.22 (1.34-3.68; p = 0.002). The cause of death was directly related to NMOSD in 93% of the cases. The age at disease onset was an independent predictor of death (HR 1.042; 95% CI 1.006-1.079; p = 0.02). DISCUSSION: AQP4-Ab+ NMOSD is associated with increased mortality and shorter life expectancy compared with that in the general population, underlining the need for highly effective treatment approaches.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Aquaporina 4 , Anticorpos , Esclerose Múltipla/complicações , Dinamarca/epidemiologia , Autoanticorpos
15.
Methods Mol Biol ; 2761: 121-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427234

RESUMO

Cell-based assay (CBA) is an immunofluorescence assay that is extensively used for the confirmatory diagnosis of inflammatory demyelinating diseases of the central nervous system, like neuromyelitis optica spectrum disorder (NMOSD). Detecting the type of autoantibody present in the sera of the patients is the primary goal. CBA is the most sensitive and recommended detection method among all similar tools. Briefly, serum autoantibody is screened by transfecting specific cells seeded on cover glasses with full-length specific antigen fused with green fluorescent protein (GFP), followed by treating them with the patient serum used here as the source of primary antibody. The autoantibody-treated cells are further labeled with a rhodamine-conjugated secondary antibody. The co-localization of GFP and rhodamine is visualized by confocal microscopy, and the intensity of fluorescence is evaluated to determine the presence of autoantibody. A detailed protocol to screen antibodies against AQP4 and MOG in human sera using this method is described.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Autoanticorpos , Aquaporina 4 , Imunofluorescência , Glicoproteína Mielina-Oligodendrócito , Rodaminas
16.
Nature ; 627(8003): 407-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383779

RESUMO

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Assuntos
Aquaporina 4 , Autoanticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica , Neuromielite Óptica , Animais , Humanos , Camundongos , 60533 , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Células Epiteliais da Tireoide/imunologia , Células Epiteliais da Tireoide/metabolismo , Transcriptoma
17.
Continuum (Minneap Minn) ; 30(1): 14-52, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330471

RESUMO

OBJECTIVE: This article describes an integrative strategy to evaluate patients with suspected myelopathy, provides advice on diagnostic approach, and outlines the framework for the etiologic diagnosis of myelopathies. LATEST DEVELOPMENTS: Advances in diagnostic neuroimaging techniques of the spinal cord and improved understanding of the immune pathogenic mechanisms associated with spinal cord disorders have expanded the knowledge of inflammatory and noninflammatory myelopathies. The discovery of biomarkers of disease, such as anti-aquaporin 4 and anti-myelin oligodendrocyte glycoprotein antibodies involved in myelitis and other immune-related mechanisms, the emergence and identification of infectious disorders that target the spinal cord, and better recognition of myelopathies associated with vascular pathologies have expanded our knowledge about the broad clinical spectrum of myelopathies. ESSENTIAL POINTS: Myelopathies include a group of inflammatory and noninflammatory disorders of the spinal cord that exhibit a wide variety of motor, sensory, gait, and sensory disturbances and produce major neurologic disability. Both inflammatory and noninflammatory myelopathies comprise a broad spectrum of pathophysiologic mechanisms and etiologic factors that lead to specific clinical features and presentations. Knowledge of the clinical variety of myelopathies and understanding of strategies for the precise diagnosis, identification of etiologic factors, and implementation of therapies can help improve outcomes.


Assuntos
Mielite , Doenças da Medula Espinal , Humanos , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/terapia , Medula Espinal/irrigação sanguínea , Mielite/diagnóstico , Neuroimagem , Aquaporina 4
18.
Continuum (Minneap Minn) ; 30(1): 180-198, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330478

RESUMO

OBJECTIVE: Immune-mediated myelopathies are conditions in which the immune system attacks the spinal cord. This article describes the distinguishing characteristics of immune-mediated myelopathies and treatment strategies for patients affected by these disorders. LATEST DEVELOPMENTS: New biomarkers, such as aquaporin 4 and myelin oligodendrocyte glycoprotein antibodies, in the blood and spinal fluid have led to the identification of antigen-specific immune-mediated myelopathies and approved therapies to prevent disease progression. ESSENTIAL POINTS: The first step in the diagnosis of an immune-mediated myelopathy is confirming that the immune system is the cause of the attack by excluding non-immune-mediated causes. The second step is to narrow the differential diagnosis based on objective biomarkers such as serology and MRI patterns. The third step is to treat the specific immune-mediated myelopathy by using evidence-based medicine.


Assuntos
Doenças da Medula Espinal , Humanos , Doenças da Medula Espinal/terapia , Aquaporina 4 , Progressão da Doença , Biomarcadores
19.
Neurobiol Dis ; 192: 106426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331353

RESUMO

The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.


Assuntos
Sistema Glinfático , Doenças Neurodegenerativas , Humanos , Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Aquaporina 4 , Inflamação/metabolismo
20.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338949

RESUMO

The water-selective channel aquaporin-4 (AQP4) is implicated in water homeostasis and the functioning of the glymphatic system, which eliminates various metabolites from the brain tissue, including amyloidogenic proteins. Misfolding of the α-synuclein protein and its post-translational modifications play a crucial role in the development of Parkinson's disease (PD) and other synucleopathies, leading to the formation of cytotoxic oligomers and aggregates that cause neurodegeneration. Human and animal studies have shown an interconnection between AQP4 dysfunction and α-synuclein accumulation; however, the specific role of AQP4 in these mechanisms remains unclear. This review summarizes the current knowledge on the role of AQP4 dysfunction in the progression of α-synuclein pathology, considering the possible effects of AQP4 dysregulation on brain molecular mechanisms that can impact α-synuclein modification, accumulation and aggregation. It also highlights future directions that can help study the role of AQP4 in the functioning of the protective mechanisms of the brain during the development of PD and other neurodegenerative diseases.


Assuntos
Aquaporina 4 , Doença de Parkinson , Sinucleinopatias , Animais , Humanos , alfa-Sinucleína/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...